
Sierra Wireless Innovation Summit | June 13, 2017

Practical Legato
A quick start guide to Legato development

text

Interfacing the Legato Way
Use the mangOH Red and Renfell GPIO

Lab IoT card to build a complex blinky using
timers and GPIO

text

16

Interfacing, the Legato Way

Legato is a framework that provides many APIs to ease hardware interfacing

• Access to Modem, GNSS, GPIO and system components all provided via

APIs which provide fine grained control over hardware

• Many support libraries also provided – file directory operations, mutexes,

timers, list handlers

• Worth learning the Legato APIs and libraries as they wrap up some things

that are difficult or complex to in ‘pure’ linux.

• Legato framework is Event Driven, so most APIs follow a ‘register handler’,

‘wait for event’ style of programming

text

17

Timers

• Legato has native support for timers

• A Timer can be one shot or repeat ‘n’ times or free-running

• Limit of 32 timers per application

• Event driven - Use a handler function called when timer times out

• Can be started, stopped, restarted or deleted

• Period range from mS to hours (or longer)

• Individual timers referenced by ‘handle’

text

18

Sample Timer Configuration
Timer setup

void BlinkTimerHandler(le_timer_Ref_t pTimerRef)
{

static uint8_t state = 0;

if (state) { state = 0; }
else { state = 1; }

LE_INFO("state= [%s]", ((state)?"HI":"LO"));

return;
}

le_timer_Ref_t BlinkTimer = NULL;

BlinkTimer = le_timer_Create("BlinkTimer");

le_timer_SetHandler (BlinkTimer,
BlinkTimerHandler);

le_timer_SetMsInterval(Gpio1BlinkTimer, 500);

le_timer_SetRepeat(Gpio1BlinkTimer, 0);

le_timer_Start(Gpio1BlinkTimer);

• Timer Handle variable

• Create new timer

• Event Handler Definition

• Do something when the timer fires

• Add the event handler

• Set the interval

• Configure repeat

• Start the timer

text

1919

Useful I/O:
•GPIO
•SPI
•I2C
•UART
•USB
•others

IoT connector

All I/O is at 1V8 so interface hardware
is required to talk to real world.

Common hardware interface between mangOH and FX30.

text

20

GPIO on IoT Connector

• Each GPIO can be configured as an Input or an Output

• Inputs can have internal pull-up OR pull-down resistors enabled, or neither

• Inputs can have an event handler attached to react to input changes

• Outputs can be push-pull (drive to +V or GND) or open drain (drive to GND only) or

Tri-State (output state ignored – used when sharing GPIO with other active devices)

• Outputs have polarity active HI (+V when on and 0 when off) or active LO (0V when

on and +V when off)

• GPIO I/O is managed by the Legato GPIO service – the user doesn’t directly have to

manipulate hardware registers

text

21

GPIO Input events

• Can add an ‘Input Event Change Handler’ to be activated when the input changes

state (interrupt)

• Event can be triggered on Rising Edge, Falling edge or both edges

• Input change works even if underlying GPIO hardware doesn’t support interrupt on

change

• If the GPIO doesn’t support interrupt the pin will be scanned by a timer every n mS

and the interrupt ‘emulated’ by the GPIO service

• Input Event Change Handler should be short and as minimal as possible.

text

22

Linking Components to Services

• A component can publish functionality for other components to use – so it will

become a server

• Most system interfaces are provided via Services (GPIO, GPS positioning etc)

• A component attaches to a service by listing the service as a ‘requirement’ in the

requires: stanza in Component .cdef

• An application links the component to the service by adding bindings in the

application.adef file

text

23

Component.cdef requires: api:

• External services are listed as APIs in
the requires: stanza in
Component.cdef

requires:
{
api:
{
IoT_RESET = le_gpio.api

}
}

requires:
{
api:
{
le_cfg.api

}
}

• APIs can renamed to make their
usage clearer in your code

text

24

Application.adef bindings:

• The APIs required by a component

are bound to the appropriate

service in the .adef bindings: stanza

bindings:
{
proc.comp.le_avc -> avcService.le_avc

}

bindings:
{
proc1.comp1.le_avc -> avcService.le_avc
proc2.comp2.le_avc -> avcService.le_avc

}

• APIs are bound on a

process.component.api basis

• If there is more than one process

then there may be multiple entries

for the same target service

bindings:
{
}

text

25

GPIO bindings

• Many GPIOs use the same le_gpio.api API

• Each GPIO must be explicitly named in Component.cdef

• Each renamed GPIO must be mapped to the required hardware pin in the adef

bindings: stanza

IMPORTANT:
renaming an API will ALSO rename all the functions and constants available in the API

text

26

Example: A complex blinky

• Using Renfell GPIO Lab card – 2 digital out indicators, 2 digital in switches (one

pulled high, one pulled low)

• Use a repeating timer to flash GPIO1 at 500 ms on, 500mS off

• Use a timer to flash GPIO4 at value stored in config flash

• Use an input event on GPIO2 and GPIO3 input to catch button press events

• GPIO2 pressed, increase the flash rate of GPIO4

• GPIO3 pressed, decrease the flash rate of GPIO4

• Save GPIO4 flash rate into config flash when the application is stopped or

terminated

text

27

Demonstration

Demonstration

