
Sierra Wireless Innovation Summit | June 13, 2017

Practical Legato
A quick start guide to Legato development

text

Leveraging existing Linux knowledge in the
Legato Environment

Use the FX30 and Renfell serial card to
build a simple chat application (the Case

Inverter)

text

29

Serial ports in Linux

• Serial port in Linux is technically a device
• A device in Linux looks like a file
• The ‘filename’ is found under the /dev directory and has read/write security

permissions like any other linux file
• Named depending on what hardware is providing the communications interface

• /dev/ttyS0 – first hardware UART (16550 equivalent on x86 motherboard)
• /dev/ttyUSB0 – first enumerated USB based serial port
• /dev/ttyUSB1 – second enumerated USB serial port etc
• /dev/ttyACM0 – another type of USB serial port

• Devices can come and go – especially USB based serial ports
• USB serial ports may not always have the same device name depending on the

order that the devices were enumerated – use mdev (embedded version of udev)
rules to assign devices to fixed names if required

text

30

Mixing Legato and Linux

• Legato framework APIs sit over the top of standard Linux APIs

• If it’s not possible to do in Legato, try to do it using standard Linux API

• There may be caveats when mixing APIs – check the documentation first!

• It is possible to use existing linux libraries in legato – will need to be cross-compiled

before application can run on the WP – source required – no binaries!

text

31

Dealing with a serial port

There is a difference between a fd and FILE*

• A fd (file descriptor) is a low level integer ‘handle’ used to identify an opened
file/socket/device at the kernel level

• A FILE* (FILE pointer) is a higher level library construct used to identify a file and
wraps a file descriptor and adds buffering and other features to make I/O easier

• fd is used for low level functions such as open(), read(), write() and close()
• FILE* is used for buffered I/O functions such fopen(), fgets(), fclose() and similar

Do not use a FILE* to access a device – devices needs fd to access low level
functions such as termios() interface management and ioctl() hardware drivers

text

32

Open and set up a Serial port

int32_t SerialFd = -1;
SerialFd = open(SERIAL_PORT,(O_RDWR | O_NOCTTY);
if (SerialFd < 0)
{

LE_FATAL("Error opening %s err[%d]:%s",
SERIAL_PORT, errno, strerror(errno));

}

int32_t initSerialPort(int pFd)
{

struct termios options;

LE_INFO("Configuring Fd [%d]", pFd);

/* Get current options for the fd */
tcgetattr(pFd, &options);

/* make the device 'raw' */
cfmakeraw(&options);

/* set the baud rate */
cfsetspeed(&options, SERIAL_BAUD);

/* and set the new options to the fd */
tcsetattr(pFd, TCSANOW, &options);

return pFd;
}

• Open a serial port using open() –

save the fd that is returned and

always check for errors!

• A serial port has a number of

characteristics that need to be set

(BAUD, Stop bits, Parity are the

common characteristics, but there

lots of others such as flow control,

input and output buffering etc)

• Use the termios() family of

commands to set the serial port

configuration.

text

33

Sidebar: The Legato Sandbox

• Legato application runs inside a ‘sandbox’ by default

• Sandbox enforced at Operating System level using a chroot() jail

• Sandbox prevents application accessing anything outside chroot() jail

• This includes accessing devices

text

34

Sidebar: The Legato sandbox (continued)

There are two ways around this:
• Resources outside the application can be added to the ‘requires’ stanza in the

Component.cdef. Files, devices, directories and libraries can all be ‘required’ by an app
and will either be copied or symlink’d into the application sandbox by the legato framework*

Or:
• The application can be configured to run ‘unsandboxed’ using the sandboxed:false

command in the application .adef file.

Running un-sandboxed may have reliability and security implications.

*If a device doesn’t exist when the application is started, the application will fail to start because the
‘resource is unavailable’. This is an issue when expecting to use a USB or other removable device and the

device is not connected at start-up.

text

35

Waiting for input

Obvious: loop waiting for read() to return data

Smarter: use select() or poll() to monitor the fd, then read when data available

Both methods are bad in the Legato environment as will block execution inside
COMPONENT_INIT{}

proper legato method: use the File Descriptor Monitor API to set up event handler to listen
for FD events.

text

36

Sample application: The CaSe InVeRtEr

Requirements:
• Open serial port (/dev/ttyUSB0)
• Configure serial port for 115200 Baud, 8 data, 1 stop, no parity
• Set up a fd event monitor for the ‘data available to read()’ (POLLIN) event
• Listen and read() incoming characters
• For each character, if it’s an alpha, invert the case, else do nothing
• Write() the modified character back to the serial port
• Run un-sandboxed so that the application will always start, even if the serial device

is not present

Remember, the COMPONENT_INIT{} function HAS to complete, or other
components in the application will not run.

text

37

The CaSe InVeRtEr: main.c

• Required legato header files

• ‘C’ library standard header files

• Local defines

#include "legato.h"
#include "interfaces.h"

#include <ctype.h>
#include <stdio.h>
#include <stdint.h>
#include <termios.h>

#define SERIAL_PORT "/dev/ttyUSB0"
#define SERIAL_BAUD B115200

/* Global Variables */
int32_t SerialFd = -1;
le_fdMonitor_Ref_t SerialFdMonitor = NULL;

int32_t initSerialPort(int pFd)
{

struct termios options;

LE_INFO("Configuring Fd [%d]", pFd);
/* Get current options for the fd */
tcgetattr(pFd, &options);
/* make the device 'raw' */
cfmakeraw(&options);
/* set the baud rate */
cfsetspeed(&options, SERIAL_BAUD);
/* and set the new options to the fd */
tcsetattr(pFd, TCSANOW, &options);

return pFd;
}

• Initialize the serial device as a ‘raw’

device

• Use the linux standard termios()

family of functions

• Global variables

text

38

The CaSe InVeRtEr: main.c

• Set up the file descriptor monitor
event handler

• If there is data available (POLLIN
event)

• Loop forever

• Read a character

• Unknown error read()ing, exit

• No data left, break out of loop

• Process read data and write back to
device

static void serialFdMonitorHandler(int pFd, short
pEvents)

{
if (pEvents & POLLIN) // data available for read
{

ssize_t len;
// need to read characters until no more data
for (;;) // read all data
{

char ch;
// read single byte at a time
len = read(pFd, &ch, 1);

// test for error
if ((len == -1) && (errno != EAGAIN))
{

LE_FATAL("read read() error:[%d:%s]",
errno, strerror(errno));

}
// if nothing to read,
// len==-1 && errno==EAGAIN. bail out
if (len <= 0)
{

break; // break out of read() loop
}
// process buffer here
if (isalpha(ch)) // A-Z or a-z
{

ch = ch ^ 0x20; // invert by xor'ing
}
write(pFd, &ch, 1);

}
}

}

text

39

The CaSe InVeRtEr: main.c

• Signal handler to catch when the
application is terminated

• Lets us clean up nicely

static void sigHandlerSigTerm(int pSigNum)
{

LE_INFO("SIGTERM caught, closing app");
if (SerialFdMonitor != NULL)
{

le_fdMonitor_Delete(SerialFdMonitor);
SerialFdMonitor = NULL;

}
if (SerialFd > -1)
{

close(SerialFd);
SerialFd = -1;

}
}

text

40

The CaSe InVeRtEr: main.c

COMPONENT_INIT{} is the legato

equivalent of main()

• Register handler to catch

termination signal

• Open the serial device

• Initialize the serial device as a ‘raw’

device

• Setup the fd monitor to call an event

handler when a POLLIN event (data

is ready) is received

COMPONENT_INIT
{

LE_INFO("FX30 USB Serial test init");

// setup to catch application termination and
// shutdown cleanly
le_sig_Block(SIGTERM);
le_sig_SetEventHandler(SIGTERM, sigHandlerSigTerm);

// open the serial port
if ((SerialFd = open(SERIAL_PORT, (O_RDWR | O_NOCTTY))

) < 0)
{

LE_FATAL("Error opening %s err[%d]:%s", SERIAL_PORT
,errno, strerror(errno));

}
LE_INFO("Open %s OK. fd[%d]",SERIAL_PORT, SerialFd);
// configure UART port using termios
initSerialPort(SerialFd);

// set up FD monitor
// note: this doesn't return on error, so no need to
// check for errors....
SerialFdMonitor = le_fdMonitor_Create("SerialPort"

,SerialFd
,serialFdMonitorHandler
,POLLIN

);
/* Remember that COMPONENT_INIT() must exit or the
rest of the application will never run */

}

text

41

The CaSe InVeRtEr: Component.cdef

The Component.cdef file is

straightforward

• To run the application ‘sandboxed’,

the component requires the device

to be linked from the root file

system into the sandbox.

• Note that the application also needs

both Read and Write access to the

device

requires:
{
/*
* create external IPC APIs that this component needs
* to operate
* These are generated into interfaces.h - which
* needs to be included in any
* source files that use the interfaces
*
* NOTE: These instances may need to be bound to the
* appropriate service in the adef:bindings stanza
*/

api:
{
}
device:
{

// read-write access to USB Serial device
// mapped internally to component, so
// shouldn't need to run un-sandboxed
[rw] /dev/ttyUSB0 /dev/ttyUSB0

}
}

text

42

The CaSe InVeRtEr: caseinverter.adef

The adef file is very simple – no
bindings or requires are needed
even though we’re mixing Legato
and ‘standard’ linux

• Option to run the application ‘un-
sandboxed’

• Manual start for debug purposes
• Set the fault action to ignore

(default, but let’s be explicit about
it)

sandboxed: false

version: 16.07.0
maxFileSystemBytes: 512K

start: manual

executables:
{

caseinverter = (caseinverterComp)
}

processes:
{

envVars:
{

LE_LOG_LEVEL = DEBUG
}
run:
{

(caseinverter)
}
maxCoreDumpFileBytes: 512K
maxFileBytes: 512K

faultAction: ignore
}

text

43

Demonstration

Demonstration

